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Abstract

Data-dependent interpolatory techniques can be used in the reconstruction step of a
multiresolution "a la Harten". These interpolatory techniques lead to nonlinear mul-
tiresolution schemes. When dealing with nonlinear algorithms, the issue of the stability
needs to be carefully considered. In this paper we analyze and compare several strategies
for image compression and their ability to effectively control the global error due to
compression.

1 Introduction
Multiscale transformations are being used in recent times in the first step of transform
coding algorithms for image compression. Ideally, a multiscale transformation allows for
an efficient representation of the image data, which is then processed using a (non-
reversible) quantizer and passed on to the encoder which produces the final compressed
set of data which is ready to be transmitted or stored. Compression is indeed achieved
during the second and third steps: the quantization and the encoding of the transformed
set of discrete data.

It is quite clear that the properties of the multiscale transformation are most im-
portant in the overall performance of the transform coding algorithm. Until recently, the
multiscale transformations used for image compression were always based on linear filter
banks, however, the nonlinear alternative has been explored lately by various authors
from different points of view, and preliminary results show the alternative to be very
promising [12, 8, 6, 2, 3]. The key question when using, or even designing, a nonlinear
multiscale transformation is that of stability. In order for such transformations to be
useful tools in image coding, it is absolutely necessary to keep a tight control on the
effect of quantization errors in the decoding process.

In this paper we examine the question of stability for nonlinear multiscale trans-
formations within Harten's framework for multiresolution [14, 15]. Harten's framework
is broad enough to include all classical wavelet transformations as particular cases (just
as it happens in the Lifting framework of W. Sweldens [17], developed slightly later in
time but independently), however the design of the multiscale transformation is done
directly on the spatial domain.
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The building blocks of Harten's multiresolution framework are two operators that
connect adjacent resolution levels. The Decimation (or also, Restriction) operator is a
linear operator which acts as a low-pass filter, extracting low-resolution information from
a discrete data set. The Prediction operator (also Projection) uses low-resolution data to
predict discrete data at a higher resolution level. It is precisely the design of this operator
what distinguishes Harten's framework from all other multiresolution frameworks. The
prediction operator is based on a consistent Reconstruction technique, and this opens up
a tremendous number of possibilities in the design of multiresolution schemes. The use
of the reconstruction process as a design tool makes it, conceptually, a simple matter
to introduce adaptivity into the multiscale transformation; we only need to make the
reconstruction process data-dependent [5, 4, 14].

This paper is organized as follows. In Section 2 we recall the so-called cell-average
framework, an appropriate setting for image compression, and describe a class of nonlin-
ear prediction operators obtained by mean-average interpolation [10, 14, 15]. In Section 3
we examine the question of stability for nonlinear multiscale transformations and relate
it to the synchronization of the data-dependent choices made in the encoder and the
decoder. We also include a set of numerical experiments that illustrate he performance
of several nonlinear multiscale transformations.

2 Multiscale transformations in the cell-average setting

Harten's general framework for multiresolution [15] relies on two operators, Decimation
and Prediction, that define the basic interscale relations. These operators act on finite
dimensional linear vector spaces, Vi, that represent the different resolution levels (j
increasing implies more resolution)

(a) D3 : Y *V VYi-, (b) Pj : -"+ VY, (2.1)

and must satisfy two requirements of algebraic nature; Di needs to be a linear operator
and DiPj = Ivj-', i.e., the identity operator on the lower resolution level represented
by Vi-1. For all practical purposes, Vi can be considered as spaces of finite dimensional
sequences.

Using these two operators, a vector (i.e., a discrete sequence) vi e VJ can be decom-
posed and reassembled as follows

vj._ j-1 - Djvj

(a) "3 ei = - Pv (b) v= Pjvj-l + e3  (2.2)

where e3 represents the error in trying to predict the jth level data, v3, from the low
resolution data vi- 1 = Divi, using the prediction operator P.

In the cell-average setting, the discrete data are interpreted as the cell-averages of
a function on an underlying grid, which determines the level of resolution of the given
data. The one dimensional case, in which one considers a set of nested dyadic grids on
the interval [0, 1], {xJ}, j Ž 0 of size hj = 2-ih o ,

X 3 J={x} x =i.hj, i=O,...,Nj N hj 1 (2.3)
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is the easiest one to describe, and it is also directly applicable to two-dimensional (2D)
data via tensor product [2, 3] (the cell-average framework in several dimensions and
non-tensor product (unstructured) grids is considered in e.g. [1]).

In this simple one-dimensional setting, the cell-average framework is characterized by
the following decimation operator Di

1.

(Dv )i = 1(v 1 +vg), 1 < i < Nj-I, (2.4)
2 2-

where Nj is the number of equally spaced intervals on Xi, the grid on [0, 11 that repres-
ents the jth resolution level. The consistency requirement for the prediction operator,
i.e., DiP. = Iyj-i which is the only necessary requirement for the prediction in Harten's
framework, becomes then

(Pjvj- 1 )2i-1 + (Pjvj-1 ) 2i = 2v•-. (2.5)

Observe that (2.4) and (2.5) imply that
(PjVj-1)2i + (Pjvj- 1)2l = vji + vJ

Hence
e.2i 1 = v~i- - (Pjv-

1
)2il -= (Pjv

1
) 2 i - V~i = -e2i.

Therefore the prediction errors at even and odd grid points on the jth level in (2.2)
are not independent. By considering only the prediction errors at (for example) the
odd points of the grid Xi, one immediately gets a one-to-one correspondence between
the sets f{{jvl}iN, - f ji {d-1JNId }fJ'NJ-1, with W, = anV Dt vi J• l • T'i • = 1 ,t i i= 1 -, d 3i 1 a n d vi- I = D v . T h e

one-dimensional multiscale transformation and its inverse can be written as follows,

JForj=L,...,1 1
vL MYL (vO, d' dL) For i =-].. Nj-1VL MvL=(vodl,...,dL) F i--1 = (Vi 4 Vi~l)/2 (2.6)

di v~i- - PjVj
1

) 2 i-

Forj = LFor i =-1..Nj_I1(27

Vd (VO,dl,...,dL) MlVd vi_ = (PjVj -1 + d "
2 = }

Observe that since d = ei 1 = i the consistency relation (2.5) implies that the
computation of vi in (2.7) is equivalent to

2v - = V-(Pv )2i - di (PjVj)2i + e (2.8)

Therefore (2.6) and (2.7) are just the repeated application of the decomposition and reas-
sembling specified in (2.2)(a) and (2.2)(b). Thus (2.6) defines a multiscale transformation
and (2.7) is the inverse transformation, whether or not the prediction operator is linear.

Next, we follow [4, 14, 15] to describe a class of linear prediction operators that leads
to the (1, M) branch of the Cohen-Daubechies-Feauveau family [7], which is biorthogonal
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to the box function [11, 151. This class is also considered in [6] within the lifting frame-
work, where it is described as a particular case of Donoho's average interpolation [9].

Given an integer s > 1, for each 1 < i < Nj-1 we construct a polynomial, pi(x), of
degree 2s such that

1j-
~1  -+ p(x)dx V3=j- for 1 = -s,..., s. (2.9)ýhj - I xjL Ai+1'

There are various ways to prove that pi(x) in (2.9) always exists and it is uniquely
defined by the 2s + 1 conditions in (2.9) [1, 9, 14]. Then we define

(PjVj- 1 )2  Lj pi(x) dx, (Pjv 1 )2 1 = pi (x)dx. (2.10)
2i-1 2i-2

The prediction operator defined by (2.10) is data-independent, hence linear, and
it clearly satisfies the consistency relation (2.5). It can be shown that the multiscale
transformations (2.6) and (2.7) for this class of prediction operators turns out to be the
(1, M = 2s + 1) branch of the Cohen-Daubechies-Feauveau family.

A nonlinear prediction operator is obtained if we construct p (x) in a data-dependent
way. An example of nonlinear multiresolution transformation constructed in this fashion
is considered in [14, 4, 2], where a nonlinear ENO-type technique (Essentially Non Os-
cillatory, see [16]) is used to construct pi(x). The key idea, which is in essence common
to the approach used in designing nonlinear filter banks, is to avoid using data across
an edge for the prediction step.

The ENO nonlinear technique is better described if we associate to each polynomial
piece pi(x) a stencil, Si, which is the set of indices of the values used to define pi(x). In
the linear case S = {i - s, ... , i + s}; the stencil is independent of the data set {v3-}
and, as a consequence, Pj is a linear operator. In the ENO technique described in [16], the
selection of stencil is made in a data-dependent way using the divided differences of the
data as a measure of its smoothness. Large divided differences occur when considering
data across an edge, while divided (or undivided) differences of data on smoother regions
tend to be smaller in size.

The information contained in the divided differences is then used to decide what is
Si for each i, with the only restriction that i E Si (to satisfy the consistency requirement
(2.5)). We follow [4] and consider all polynomial pieces of the same degree. In our case
#Sj = 2s, but in principle one could decide to lower the degree of pi(x), or that of
some of its neighbours, whenever an edge-detection mechanism finds an edge at the ith
interval. By lowering the degree of some polynomial pieces close to an edge, one can
avoid crossing the edge in the prediction step, as much as possible. This option is closely
related to the nonlinear multiscale transformation considered in [6] (within the Lifting
framework), where the nonlinearity comes in from adaptively choosing from the (1, M)
family of linear filters.

Once Si is determined (i e S.), pi (x) can be uniquely determined when degree pi (x) =
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#Si [1] so that
j-1Ix"pi (x) dx = v.,- for m E S,, (2.11)

and the prediction operator is then defined by (2.10).
One can be slightly more 'sophisticated' in the design of the polynomial pieces. The

Subcell Resolution technique [4, 13] allows to account for discontinuities within a cell as
follows. If an edge is detected in the ith cell, the polynomial piece pi(x) is discarded and
substituted by its left and right neighbours, pi+1 (x) and pi-i(x), assuming that their
respective stencils do not intersect, i.e. Si- 1 fSi+ = 0. At a true one-dimensional edge
(a jump) on the ith cell, the function

Y1 fX2i
F(y)= h pi+(x)xdx+-- p±i1r)dx

will have a zero on the ith cell [13], say qj, and the location of q is used to substitute the
polynomial piece pi(x) by the discontinuous piecewise polynomial function

q () Pi-&() X <_ q, (2.12)

q pi+1(x) X > 7).

The prediction operator is again defined by (2.10) at nonsingular cells (cells in which no
edge has been detected), while at the singular cell

j~j_,)2i 2iqi (x) dx, (PivJ-1)2i-1 .-qi (x)- x

S XX2 i- 2i -2

In practice it is unnecessary to compute explicitly the value of 77; only its location with
respect with xii-1 is needed, which can be found by a sign check. We refer the reader
to [4] (and references therein) for specific details on this technique, in particular on the
detection mechanism, and on its performance.

3 The question of stability: Error control versus synchroniza-
tion, with numerical examples
Lossy coding schemes introduce errors into the transform coefficients, and it becomes
crucial that the nonlinearities do not unduly amplify these errors. In lossy compression
the decoder only has the quantized detail coefficients. If we use a nonlinear prediction
operator (whether it is constructed as described in the previous section or based on
locally adapted filters, as in [6] within the Lifting framework), the quantization errors in
coarse scales could cascade across the scale ladder and cause a series of incorrect choices
(either on the filters or on the stencils) leading to serious reconstruction errors.

To avoid incorrect choices in the prediction step, whether within Harten's or the
Lifting framework, one would need to send side information on which filter was used
(Lifting) or what was the interpolatory stencil (Harten's). This is clearly inappropriate
when trying to design a compression scheme. One way to avoid storing (and sending) side
information is to somehow synchronize the nonlinear prediction operators in the encoder
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and the decoder, so as to ensure that at a given spatial location on a given scale, the
prediction operator will select the same stencil (filter bank), both in the encoding and
the decoding steps.

Within the Lifting framework, synchronization is achieved in [6] by changing the
typical Split-Predict-Update steps to Split-Update-Predict. In doing so, it is possible to
base the choice of predictor directly on already 'quantized data', thus synchronizing the
nonlinear decisions made by the encoder and the decoder.

Within Harten's framework, synchronization is just a consequence of a strategy that is
designed to fully control the compression error. Because the main design tool in Harten's
framework for multiresolution is a reconstruction technique, and because A. Harten had
already worked with nonlinear reconstruction techniques in the context of the numerical
simulation for hyperbolic conservation laws, so-called Error- Control (EC) strategies can
be found already in the early papers of Harten on multiresolution [14].

Harten's mechanism to control the global accumulated error is based on a modification
of the direct multiscale transformation, M, that ensures a prescribed tolerance on the
global prediction errors (explicit error bounds can be found in [4, 13]). The modified
transformation incorporates the quantizer to the direct multiscale transformation in
such a way that the prediction operator in the encoder also acts on already 'quantized'
data, hence synchronization is achieved because the nonlinear prediction operators both
in M and M- 1 work on the same set of discrete data at each resolution level.

To illustrate the effect of the different techniques, we take a particular nonlinear
prediction operator, a third order ENO reconstruction technique with Subcell Resol-
ution, as described in last section. We denote by MSR the multiscale transformation
(2.6), while MM denotes the EC modified transform as described in [2, 4], and MSR a
multiscale transformation in which only synchronization is enforced, as proposed in [6].
The quantization step is carried out as follows:

qu(d3 ) = 2cyround [dj/(2cj)]

and it is incorporated to the direct transformation in MM and MR (see [2, 6] for
specific details), while in MSR it is applied to the scale coefficients obtained after the
transformation. In the numerical tests we report, we take CL = 8 with L -= 4 and
Ej = Ej+1/2.

We consider two different images: the familiar image of Lena as an example of a 'real'
image, and a purely geometrical image, to which texture has been added, as in [6].

After the direct transformation (plus the quantization step) has taken place, a lossless
Lempel-Ziv compression algorithm is applied to reduce the size of the transformed image,
then a compression ratio is computed as the number of bits of the compressed repres-
entation over the number of bits of the original image. To recover the original image, we
undo the lossless compression and transform back using (2.7) in all three cases. The full
compression algorithm is identified in each case by an acronym, 'ST' for MSR, 'EC' for
MSR and 'SYNC' for MSSR.

In Tables 1 and 2 we compile a number of quantities that measure the 'quality' of the
reconstructed image, and therefore the robustness and reliability of each multiresolution-
based compression algorithm, the magnitude of the global compression error, measured
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Method 111 110II , 11112 r, entropy
ST 258 5.71 9.08 11.3:1 .6449

SYNC 195 6.45 9.82 7.9:1 .8875
EC 25.4 4.47 5.73 9.7:1 .6850

TAB. 1. Geometrical image.

FIG. 1. Geometrical image: (a) original, (b) ST, (c) EC, (d) SYNC.

in various norms, the compression rate rr and the entropy of the transformed image.
The reconstructed images in both cases can be observed in Figures 1 and 2.

It can be clearly observed that the absence of any type of synchronization procedure
can lead to a very poor reconstructed image. Synchronization only improves the quality,
but is not as robust as the full EC mechanism, designed in this case to enforce a certain
error bound in the 2-norm (as observed in Tables 1 and 2, the 2-norm of the global error
is kept below EL = 8). It is worth mentioning that the compression rate and the entropy
of the compressed data are all very close, however the visual quality of the reconstructed
image is significantly better for the EC compression algorithm.
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